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Phylogenetic comparative methods (PCM)
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• The reason for phylogenetic comparative methods
• Brownian motion as a null model for comparative methods
• Measuring phylogenetic “signal”

oPagel’s lambda (λ)
oBlomberg’s kappa (K)

• Phylomorphospace: projecting a tree into shape space
o	Ancestor state reconstruction
o	Confidence intervals and probabilities

• Types of PCM for GMM
o	 Independent contrasts
oPGLS “regression”
o	Phylogenetic MANCOVA

• Adams vs. Klingenberg on analyzing multivariate data
• Why visualizing results of PCMs is difficult

o	PCMs measure joint change in shape, not shape per se
The pitfalls of phylogenetic principal components analysis

Outline
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What are phylogenetic comparative methods (PCMs)?
Modified statistical tests that take into account non-independence in 
data that come from different species.

PCMs are applied to regression, MANOVA, and other standard tests, 
and they can be used to estimate rates of evolution and to 
reconstruct ancestral trait states on a phylogeny.
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Phylogenetic correlation in random traits
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Additional tips multiplies the effect
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How do PCMs work?

• PCMs estimate how much covariance a trait should have 
between taxa (and between traits) is expected from the 
phylogenetic topology

• The expected phylogenetic covariance is removed, leaving the 
residual between-trait covariance

• Statistical tests are carried out on the residual component
strong
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How do we know the expected covariance?
Depends on how the traits evolve: Brownian motion (purely random 
evolution) is usually used for PCMs.

Evolution is change in the mean phenotype (=trait value) from 
generation to generation...

  

Evolution = Mean(selection) + 
                   Mean(drift) + 
                   Mean(nongenetic variation)
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Definition of Brownian motion
• Brownian motion is equivalent to an unbiased random walk (at 

type of Markov process)

• change at each step is random with respect to other steps

• change at each step has an equal chance of moving in positive or 
negative direction

• typical implementation specifies steps as coming from a normal 
distribution with mean=0 and variance=rate of evolution
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Statistical properties of Brownian motion

1 random walk 100 random walks
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Statistical properties of Brownian motion
1. Probability of endpoints is a normal 

distribution (central limit theorem ensures 
that outcome of series of random events 
is normally distributed)

2. The most likely endpoint is the starting 
point

3. The standard deviation of endpoints 
increases with the square root of time

4. The variance of the endpoints increases 
linearly with time

5. The variance of the endpoints equals 
average squared change per step (rate) x 
number of steps (time)

Probability of end points
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Expected covariance among tips is 
proportional to shared branch lengths
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Because variance increases linearly with time, covariance between 
tips is linear with respect to shared branch time
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Expected covariance among tips is 
proportional to shared branch lengths
Phylogenetic covariance matrix (“C” of many authors) has diagonal equal to 
total branch length between tip and base and off diagonals equal to length 
of shared branches.

Actual expected variance and covariance is C x rate (as explained above)
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Expected vs. actual

Covariance of 50 
simulated traits

Covariance 
expected under 
Brownian motion



Earth and Atmospheric Sciences | Indiana University
(c) 2018, P. David Polly

Summary of Brownian motion

• Brownian motion makes a good statistical null because it is a 
purely random model

• Outcomes of Brownian motion processes are statistically 
predictable

• Brownian motion can occur in nature through genetic drift or 
selective drift (selection that changes randomly in direction and 
magnitude); therefore Brownian motion does not necessarily 
equate with “neutral evolution”.
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Measuring phylogenetic “signal”

The phylogenetic component of data can only be assessed relative to some 
expectation, such as Brownian motion.

Blomberg’s Κ (kappa) = observed cov / expected cov
(Blomberg et al., 2003)
see also Adams’ (2014) Κmulti  especially for multivariate data 

K can be thought of as the proportion of the covariance that is due to phylogeny.  
Usually ranges 0 to 1, but can be greater than 1 if phylogenetic covariances are 
stronger than under BM.

Pagel’s λ (lambda) = scaling factor so that tree fits BM model
(Pagel, 1999)

λ can be thought of as how you would have to scale the branch lengths so that the 
data would be obtained under a BM model.  Also usually ranges 0 to 1, where 0 is 
equivalent to no phylogenetic structure and 1 is equal to actual phylogenetic 
structure.  Can also be greater than 1 if phylogenetic covariances are stronger than 
under BM.
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Pagel’s lambda illustrated
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G562 Geometric Morphometrics

Reconstructing evolution of shape
Brownian motion in reverse

Most likely ancestral phenotype is 
same as descendant, variance in 
likelihood is proportional time since 
the ancestor lived
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G562 Geometric Morphometrics

Ancestor of two branches on phylogenetic tree

If likelihood of ancestor of 
one descendant is normal 
distribution with variance 
proportional to time, then 
likelihood of two ancestors 
is the product of their 
probabilities.

This is the maximum 
likelihood method for 
estimating phylogeny, and 
for reconstructing ancestral 
phenotypes. (Felsenstein, 

Descendant 2

Common ancestor?

Descendant 1
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G562 Geometric Morphometrics

Phylogenetic tree projected into morphospace
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• Ancestral shape scores reconstructed assuming Brownian motion
• Ancestors plotted in morphospace
• Tree branches drawn to connect ancestors and nodes
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Phylogenetic tree with 95% confidence intervals
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Gómez-Robles et a.. 2013. PNAS, 110: 18196-18201.
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What relationship do we expect between 
phylogeny and PCA space?
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Two clades separated by PC 1
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These?
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PC 1 = deep node, PC 3 = shallow node
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This?
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PC 1 = A,B, PC 2 = C,D
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PCMs useful in GMM
Phylogenetic Independent Contrasts (PIC or IC)
•Flexible method in which data are transformed to change along non-overlapping segments of a tree 

(hence “contrasts”)
•Analogous to “first differencing” in time series analysis
•Contrasts are calculated for each trait of interest, then treated as phylogeny-free variables in 

ordinary statistical tests (regression, MANOVA, etc.)
•Developed by Felsenstein (1985).  Multivariate implementation for GMM by Klingenberg (1996)

Phylogenetic Generalized Least Squares (PGLS)
•Uses C matrix to correct covariance structure in a least-squares regression
•Analogous to regressing out phylogenetic covariance as part of a trait-on-trait regression
•Results are same as with PIC or ML methods under Brownian motion
•Developed by Martins & Hansen (1997)

Phylogenetic MANOVA
•Essentially a MANOVA on independent contrasts for testing 
•Developed by Revell et al. (2007)

Phylogenetic MANCOVA
•Extension of PGLS for assessing group differences holding a continuous covariate constants 
•Developed by Smaers and Rohlf (2016)
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Adams vs. Klingenberg approaches
Phylogenetic Independent Contrasts (PIC) approach of Klingenberg

• Widely used approach, including the implementation in Chris Klingenberg’s 
MorphoJ system

• Method is simple:
• Procrustes coordinates transformed to PICs prior to analysis (assumes BM model)
• Regressions, MANOVA, etc. performed on the PIC matrix and summed across variables 

(e.g., fully multivariate)

Phylogenetic transformation approach of Adams

• Newer approach by Dean Adams implemented in the geomorph package, 
designed as high-dimensional alternative to PIC and PGLS

• Method is more abstract:
• Data are rotated into a “phylogenetic space” based on the C matrix
• Distance matrices are then calculated. Distances circumvent problems due to high 

numbers of variables in GMM data.  (capitalizes on the Q-mode / R-mode equivalence)
• Regression,MANOVA and other model fitting are based on the distance matrices to 

produce P, R, R2, and other test statistics
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Visualization of results is difficult with PCMs
Transformations for phylogenetic correction (PICs, C matrix, etc.) 
distort the shape space (indeed, even the variables on which it is 
based are changed with PICs)

Visualizing results as landmark deformations therefore requires a 
convoluted process and is sometimes impossible

When visualization is possible, it shows the pure relationship 
between independent variable and shape (e.g., between diet and 
mandible shape), without differences related to phylogeny

If relationship to independent factor is also strongly phylogenetic 
(e.g.. if each clade has a different and unique dietary specialization), 
PCMs may “over correct” and remove the variation that is actually 
associated with the factor
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Pitfalls of Phylogenetic Principal Components 
Analysis (pPCA)

pPCA is a PCA-like analysis based on a covariance matrix that has 
been adjusted with the C matrix

developed by Revell (2009) and available in R

pPCA has many undesirable properties:

• pPCA does not remove effects of phylogeny
• pPCA axes are correlated
• pPCA eigenvalues do not describe the variance on the pPC axes
• pPC 1 does not describe the greatest variance in the data
• pPCA does not affect the outcome of statistical tests

Recommendation:  do not use pPCA.  Use normal PCM methods instead.

For more details see:
Polly et al. 2013. Phylogenetic principal components analysis and geometric 
morphometrics. Hystrix, 24: 1-9.


